1ton-auto.ru

Тон Авто
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Делаем редуктор для регулировки тока сварочного инвертора сами — инструкция, схема, настройка

Делаем редуктор для регулировки тока сварочного инвертора сами — инструкция, схема, настройка

сварочный аппарат

Для создания точного шва, важно правильно и точно настроить варочный ток, который будет соответствовать работе.

Мастера с опытом часто сталкиваются с варкой металла разной толщины, поэтому, иногда, стандартной настройки на минимум и максимум порой не хватает, чтобы качественно работать.

Тогда необходимо настраивать электроток поэтапно, достигая нужного ампеража. Для решения этой задачи подключают к цепи вспомогательный прибор — регулятор напряжения.

Это позволяет регулировать напряжение по энергии преобразованного переменного тока, а также по энергии преобразуемого переменного тока. Каждый метод настройки преобразователя энергии для варки различается, все тонкости надо принимать во внимание.

Поговорим, как регулировать электроток в инверторах. Рассмотрим схемы аппаратов регулировки для полуавтоматических инверторов. Подскажем, как подбирать регулятор по преобразуемому переменному току для варочного преобразователя энергии.

Функции защиты расцепителя

Защита от перегрузки (L)

Защита от перегрузки представляет собой тепловую защиту. При протекании тока выше допустимого значения защита срабатывает и приводит в действие механизм расцепления.

Функция защиты от перегрузки является неотключаемой и может выставляться вручную в диапазоне I1=0,4. 1 x In, где In — номинальный ток расцепителя. Также есть возможность настроить время-токовые характеристики.

Для настройки защиты от перегрузки необходимо знать максимальный рабочий ток нагрузки (lb) и разделить его на номинальный ток расцепителя In. Уставка L должна быть больше или равна полученному значению:

L =Ib/In

Защита кабеля выполняется при условии,если lb < l1< lz, где lz — это нагрузочная способность кабеля, а l1 — уставка тока защиты от перегрузки.

Например, возьмем автоматический выключатель с номинальным током In=250 A и электронным расцепителем на 250 А. Предположим, что рабочий ток нагрузки составляет 170 A. Тогда L= Ib/In =170/250 =0,68.

Необходимо с помощью настройки DIP-переключателей выставить это значение на расцепителе и затем умножить на номинальный ток автоматического выключателя, в результате мы получим требуемое значение.

Для значения 0,68 переводим DIP-переключатели 0,16, 0,04 и 0,08 в верхнее положение.

Защита от перегрузки

Таким образом получаем I1 = 250 х (0,4+0,04+0,08+0,16) = 170 А

Также с помощью DIP-переключателей t1 можно задать кривую срабатывания автоматического выключателя, она же время-токовая характеристика — t=3с, t=6с, t=9с и t=12с для тока 6 x I1.

Защита от короткого замыкания с мгновенным срабатыванием (I)

Следующей характеристикой является защита от токов короткого замыкания, срабатывающая мгновенно, за доли секунд.

Функция мгновенной защиты реализована в виде электромагнитного расцепителя, который представляет из себя катушку соленоида, внутри которой расположен подвижный сердечник. При мгновенном возрастании электрического тока, происходящим при коротком замыкании, сердечник втягивается в катушку соленоида, преодолевая сопротивление пружины и давит на спусковой механизм расцепления, в следствии чего контакты автомата размыкаются обесточивая сеть.

Данная функция защиты имеет диапазон I3=1.5. 12 x In и является отключаемой.

Читайте так же:
Как регулировать карбюратор скутера стелс тактик 50

Для настройки защиты необходимо знать минимальное расчетное значение тока КЗ в электроустановке (Ik).

Порог срабатывания электромагнитного расцепителя должен соответствовать следующему условию: I3 < Ikмин, где I3 — уставка тока короткого замыкания.

Для расчета уставки надо разделить ток КЗ на номинальный ток расцепителя и принять значение уставки немного ниже.

I=Ik мин/In

Опять же для примера возьмем автоматический выключатель с номинальным током In=250 A и электронным расцепителем на 250 А.

Расчетный ток КЗ lkмин примем равным 1800 A.

Рассчитаем необходимую уставку: I3 = Ik мин/ In =1800/250= 7,2. При помощи DIP-переключателей выставим значение 7.

Мгновенная защита от короткого замыкания

Тогда I3 = 7 x 250 = 1750. Как видим, расчетное значение вписывается в условие I3 < Ikмин = 1750 < 1800 А.

Защита от короткого замыкания с задержкой срабатывания (S)

Задержка срабатывания (Селективность) требуется для того, чтобы при любом повреждении определенного участка цепи отрабатывал только автоматический выключатель, который защищает эту цепь, в то время как остальная часть электроустановки должна находиться в рабочем режиме.

Благодаря этому достигается бесперебойная работа всей электроустановки в целом.

Для настройки селективности S автоматического выключателя необходимо, так же как и в случае настройки защиты от короткого замыкания с мгновенным срабатыванием, минимальное расчетное значение тока КЗ (Ik) разделить на номинальный ток расцепителя (In).

S=Ik мин/In

Рассмотрим настройку уставки S опять же на примере автоматического выключателя с номинальным током In=250 A и электронным расцепителем на 250 А.

Расчетный ток КЗ lkмин = 1800 A.

Тогда S = Ik мин/ In = 1800/250 = 7,2.

DIP-переключателями выставим значение 7.

Защита от короткого замыкания с задержкой

I2 = 7 x 250 = 1750 < 1800 А.

Выдержка по времени t2 изменяется согласно токовременной зависимости t2=const или l2t = const.

При выборе t2 = const в случае КЗ, все токи, равные или превышающие I2 должны отсекаться в пределах установленного времени t2. При выборе характеристики l2t = const, применимы расчеты, сделанные для определения времени срабатывания t1, учитывая соответствующие пороги тока I2.

Время задержки устанавливается с помощью DIP-переключателей, согласно одной из четырёх кривых срабатывания:

  • t=0,05с при 8 х In
  • t=0,1c при 8 х In
  • t=0,25c при 8 х In
  • t=0,50с при 8 х In

Защита от замыкания на землю (G)

Функция защиты замыкания на землю основана на принципе измерения векторной суммы токов, протекающих по токоведущим проводникам — фазным и нейтральному. В случае отсутствия повреждения эта сумма равна нулю, но в случае замыкания на землю, часть тока (дифференциальный ток) возвращается в источник питания через защитный проводник и/или заземление, нарушая баланс токов. Если значение дифференциального тока превышает уставку срабатывания защиты, автоматический выключатель должен срабатывать в течении заданного времени.

Защита замыкания на землю применяется в электроустановках в системах заземления ТТ и TN-S, а также в системах TN-CS, где она ограничивается той секцией установки, которая имеет собственный нейтральный провод N, ответвленный от проводника PE и проложенный отдельным проводом.

Читайте так же:
Как регулировать сиденье в автобусе

В системах TN-C функция защиты G не применяется, поскольку нейтраль и защитный проводник совмещенные.

Выбор устройства для защиты от замыкания линейного проводника на землю и защиты при косвенном прикосновении осуществляется путем согласования времени отключения с полным сопротивлением контура замыкания на землю. Это означает, что должна соблюдаться следующая зависимость:

Zs х la < Uo

  • Zs — полное сопротивлением контура тока замыкания на землю.
  • la — ток отключения в пределах выдержки времени.
  • Uo — номинальное действующее напряжение переменного тока относительно земли.

Также данное выражение может быть выражено следующим образом — Ia < Uo/ Zs = IklPE, где IklPE — ток замыкания линейного проводника на землю.

Из этого следует, что защита при косвенном прикосновении осуществляется в том случае, если уставка расцепителя автоматического выключателя меньше тока замыкания линейного проводника на землю IklPE в защищаемой открытой проводящей части.

G = IklPE/ In

Возьмем автоматический выключатель 250 A с электронным расцепителем на 250 А. Примем IkPE=130 A.

G = 130/ 250 = 0,52. DIP-переключателями выбираем уставку 0,5.

Защита от замыкания на землю

Тогда I4 = 250 х 0,5 = 125 А. Что меньше, чем IkPE=130 A. Условие соблюдается.

Время срабатывания t4 выбирается в соответствии с const=l2t. Поэтому для определения времени срабатывания необходимо руководствоваться теми же расчетами, что использовались при определении выдержки времени t1, но с учетом соответствующих порогов срабатывания I4 и соответствующих характеристик кривых.

Заключение

Таким образом настраиваются все основные защитные функции электронного расцепителя PR222DS/PD. Помимо ручной настройки, для данного расцепителя возможна настройка параметров электронным способом с помощью блока тестирования и настройки SACE PR 010T.

Типы регуляторов тока

Принципиальная электрическая схема регулятора постоянного тока

Принципиальная электрическая схема регулятора постоянного тока.

Существует больше количество способов изменения силы тока во время проведения сварочных операций. Еще больше разработано принципиальных электрических схем регуляторов. Способы управления сварочным током могут быть следующие:

  • установка пассивных элементов во вторичной цепи;
  • переключение числа витков обмоток трансформатора;
  • изменение магнитного потока трансформатора;
  • регулировка на полупроводниках.

Следует знать преимущества и недостатки разных методов регулировки. Назовем характерные особенности указанных типов.

Резистор и дроссель

Первый тип регулировки считается самым простым. В сварочную цепь включают последовательно резистор или дроссель. В этом случае изменение силы тока и напряжения дуги происходит за счет сопротивления и, соответственно, падения напряжения. Умельцы оценили простой и эффективный способ регулировки тока – включение сопротивления во вторичную цепь. Устройство несложное и надежное.

Изменение величины тока с помощью резистора

Изменение величины тока с помощью резистора.

Добавочные резисторы используются для смягчения вольт-амперной характеристики источника питания. Изготавливают сопротивление из толстой (диаметром 5-10 мм) проволоки из нихрома. В качестве пассивного элемента применяются мощные проволочные сопротивления.

Для регулировки тока вместо сопротивления ставят и дроссель. Благодаря введению индуктивности в цепь дуги переменного тока наблюдается сдвиг фаз тока и напряжения. Переход тока через нуль происходит при высоком напряжении трансформатора, что повышает надежность повторного зажигания и устойчивость горения дуги. Режим сварки становится мягкий, в результате чего получаем равномерный и качественный шов.

Читайте так же:
Регулировка стояночного тормоза вольво s60

Этот способ нашел широкое распространение благодаря надежности, доступности в изготовлении и низкой стоимости. К недостаткам отнесем малый диапазон регулирования и сложность в перестройке параметров. Сделать такую конструкцию по силам каждому. Часто применяют трансформаторы типа ТС-180 или ТС-250 от старых ламповых телевизоров, с которых убирают первичные и вторичные обмотки и наматывают дроссельную обмотку с требуемым сечением. Сечение алюминиевого провода составит порядка 35-40 мм, медного – до 25 мм. Количество витков будет находиться в диапазоне 25-40 штук.

Переключение числа обмоток

Регулировка напряжения осуществляется изменением числа витков обмотки. Так изменяется коэффициент трансформации. Регулятор сварочного тока прост в эксплуатации. Для такого способа регулировки необходимо сделать отводы при намотке. Коммутация проводится переключателем, выдерживающим большой ток и сетевое напряжение. Недостатки переключения витков: трудно найти коммутатор, выдерживающий нагрузку в пару сотен ампер, небольшой диапазон регулировки тока.

Магнитный поток сердечника

Влиять на параметры тока можно магнитным потоком силового трансформатора. Регулирование силы сварочного тока производят за счет подвижности обмоток, изменения зазора или введения магнитного шунта. При сокращении или увеличении расстояния магнитные потоки двух обмоток меняются, в результате чего сила тока тоже будет изменяться. Способ магнитного потока практически не используется из-за сложности изготовления трансформаторного сердечника.

Влияние дополнительных настроек режима сварки на шов

Для правильного формирования сварного шва необходимо соблюдать соответствие параметров процесса сварки конструкции сварного соединения. Важность правильной настройки особенно актуальна для сварки химически активных при высоких температурах металлов и сплавов. Не следует пренебрегать опытными работами при настройке режима.

Влияние параметров дуги

Напряжение сварочной дуги растет при увеличении ее длины. Это оказывает влияние на образование дугового разряда и стабильность процесса горения.

Повышенное напряжение ведет к росту контактного пятна на поверхности металла и расширению шва.

Влияние угла наклона электрода

Позиционирование электрода относительно поверхности детали оказывает влияние на глубину провара и размеры сварочной ванны. Обычно применяют перпендикулярное расположение электрода к плоскости сварки.

Влияние вылета электрода из токоподающего наконечника

Увеличение вылета приводит к дополнительному нагреву сварочной проволоки, её ускоренному расплавлению и повышению доли электродного металла в металле сварного шва. Оптимальный вылет электродной проволоки в зависимости от ее диаметра указан в таблице.

Диаметр проволоки, мм2-2,53-45
Вылет из наконечника, мм14-1617-1920-22

Устройство защиты нагрузочной цепи представляетреле прямого действия, способное распознавать наступление аварийной ситуации и предотвращать развитие негативных процессов. Существует несколько видов расцепляющих устройств:

  • расцепители с защитой от сверхтоков и фиксированными заводскими настройками (тепловые компоненты с задержкой времени и электромагнитные мгновенного действия);
  • устройства селективного распознавания перегрузки от короткого замыкания с настройками номинального тока и времени выдержки (полупроводниковые, электронные);
  • компоненты с расширенной функциональностью (независимые, минимального и нулевого напряжения).
Читайте так же:
Регулировка карбюратора мотоцикла рейсер 200

Тепловой

Тепловой расцепитель – биметаллическая пластина из 2 спаянных (сваренных или приклепанных) вместе полосок. Материалы для полосок подбираются таким образом, чтобы коэффициент температурного расширения одной отличался от аналогичного параметра другой. При прохождении электричества биметаллическая спайка нагревается сильнее, чем больше сила тока в ней. Если металл нижней полоски при нагревании удлиняется меньше, чем металл верхней, биметаллическая пластина изогнется вниз.

При определенном значении силы тока изгиба пластины достаточно для размыкания контактов автомата. Тепловой расцепитель реагирует на перегрузку ≥30% номинального значения тока, поэтому применяется для защиты от перегрузок. Время срабатывания находится в обратной зависимости от величины проходящего тока. В разных коммуникационных аппаратах оно составляет от секунд до 1–2 часов.

Электромагнитный

Электромагнитный компонент представляют катушку (соленоид) с сердечником, передвигающимся под воздействием электромагнитного поля тока, проходящего в обмотке. Сердечник, преодолевая сопротивление пружины, вызывает срабатывание отключающего цепь элемента.Электромагнитные реле прямого действия распознают короткое замыкание (превышение значения тока в несколько раз от номинального значения) и, в зависимости от чувствительности срабатывания, автоматам присваивается класс А, В, С и D.

Расцепители этого вида срабатывают за доли секунды и относятся к элементам мгновенного действия, используются для защиты от токов КЗ.

Термомагнитный или комбинированный

Зачастую соединяются тепловой и электромагнитный расцепитель последовательно. Тандем обеспечивает токовую селективность: один элемент отслеживает токи в зоне перегрузки, а другой защищает электрические цепи от сверхтоков КЗ. Такую связку некоторые производители именуют комбинированным расцепителем. В зарубежных каталогах последовательное соединение 2-х устройств называют термомагнитным расцепителем.

Полупроводниковый

Полупроводниковое устройствопостроено на измерительном элементе ИЭ и исполнительном элементе – электромагните с блоком управления. Измерительный элемент собран на трансформаторе тока.

Электромагнит воздействует на механизм свободного расцепления автомата, вызывая размыкание ↔замыкание цепи.Расцепитель срабатывает при протекании в цепи тока, превышающего уставку в перегруза или короткого замыкания. Эта настройка используется как дополнительная защита к основной защите от сверхтока короткого замыкания.

Выставляются требуемые значения тока и временной задержки переключателями. Они расположены на лицевой стороне блока управления.

Электронный

Электронный аналог блок-схемой не отличается от полупроводникового расцепителя. Измерительное устройство меряет ток АВ с помощью схемы на трансформаторе.Электронный модуль блока управления сравнивает полученное и заданное значение, подает управляющее напряжение на электромагнит.

Расширенный набор опций позволяет производить логическую селективность с помощью встроенного в некоторые устройства контроллера. Электронный расцепитель отличает наличие индикатора силы тока, большой выбор настроек и максимальная точность следования поставленной задаче.

Независимый

Расцепитель независимого типа удаленно управляет коммутацией электрических цепей переменного (AC) и постоянного (DC) тока, представляет обычный расцепитель с опцией дистанционной защиты. Поступающее по управляющей цепи, например с пульта оператора, напряжение подается на соленоид. В обмотке создается магнитное поле, сердечник втягивается и приводит в действие механизм свободного расцепления за время ≤0,04 с. Чтобы вернуть автоматический выключатель в исходное состояние, следует вручную нажать кнопку с надписью «Возврат».

Читайте так же:
Регулировка тормозных лент вом мтз

Расцепитель минимального и нулевого напряжения

Некоторые АВ оснащаются дополнительно минимальными и нулевыми устройствами расцепления, которые встраиваются непосредственно в автомат или крепятся снаружи корпуса.

Устройство реле тока

Для начала давайте разберем принцип реле тока и его устройство. На данный момент существуют электромагнитные, индукционные и электронные реле.

Мы будем разбирать устройство наиболее распространенных электромагнитных реле. Тем более, что они дают возможность наиболее наглядно понять их принцип работы.

Устройство электромагнитного реле тока

  • Начнем с основных элементов любого реле тока. Оно в обязательном порядке имеет магнитопровод. Причем, этот магнитопровод имеет участок с воздушным зазором. Таких зазоров может быть 1, 2 или более — в зависимости от конструкции магнитопровода. На нашем фото таких зазора два.
  • На неподвижной части магнитопровода имеется катушка. А подвижная часть магнитопровода закреплена пружиной, которая противодействует соединению двух частей магнитопровода.

Принцип действия электромагнитного токового реле

  • При появлении на катушке напряжения, в магнитопроводе наводится ЭДС. Благодаря этому, подвижная и неподвижная части магнитопровода становятся как два магнита, которые хотят соединиться. Не дает им это сделать пружина.
  • По мере увеличения тока в катушке, ЭДС будет нарастать. Соответственно, будет нарастать притяжение подвижного и неподвижного участка магнитопровода. При достижении определенного значения силы тока, ЭДС будет настолько велико, что преодолеет противодействие пружины.
  • Воздушный зазор между двумя участками магнитопровода начнет сокращаться. Но как говорит инструкция и логика, чем меньше воздушный зазор, тем больше становится сила притяжения, и тем с большей скоростью магнитопроводы соединяются. В результате, процесс коммутации занимает сотые доли секунды.

Существуют токовые реле разных типов исполнения

  • К подвижной части магнитопровода жестко прикреплены подвижные контакты. Они замыкаются с неподвижными контактами и сигнализируют, что сила тока на катушке реле достигла установленного значения.

Регулировка тока возврата токового реле

  • Для возврата в исходное положение, сила тока в реле должна уменьшиться как на видео. Насколько оно должно уменьшится, зависит от так называемого коэффициента возврата реле.

Оно зависит от конструкции, а также может настраиваться индивидуального для каждого реле за счет натяжения или ослабления пружины. Это вполне можно сделать своими руками.

Пример стабилизатора на полевом транзисторе

При создании радиотехнических устройств с применением ламп типовой анодный блок питания не обеспечивает необходимую стабильность выходных параметров. Добавление резистора в цепь увеличивает потери, не позволяет точно корректировать изменение мощности в нагрузке.

Электрическая схема простого стабилизатора

Своими руками несложно собрать этот стабилизатор тока на полевом транзисторе. С его помощью обеспечивается точность заданных параметров в диапазоне не более 6% от номинала.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector