1ton-auto.ru

Тон Авто
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

ПИД-регуляторы в частотных преобразователях «Веспер» — высокая точность процесса автоматического регулирования

ПИД-регуляторы в частотных преобразователях «Веспер» — высокая точность процесса автоматического регулирования

Преобразователи частоты, как устройства управления асинхронными электродвигателями, — электронные приборы на базе микропроцессорных устройств со своим уникальным программным обеспечением. Они заметно улучшают работу
электропривода и, благодаря встроенному программному модулю «ПИД- регулятор», позволяют оптимизировать работу частотно-регулируемого электропривода в режиме автоматического регулирования параметров технологических процессов.

Благодаря продуманному интерфейсу и упорядоченной структуре меню специалист любого уровня сможет запустить ПЧ «Веспер». Но, чтобы уйти от типичных ошибок при интеграции ПЧ в систему автоматического регулирования, необходимо ознакомиться с принципами работы ПИД-регуляторов и этапами настройки.

Автоматическая регулировка частот процессоров: что это такое и для чего нужно

Автоматическая регулировка частот процессоров: что это такое и для чего нужно

Еще 15 лет назад компьютерные энтузиасты увеличивали частоту центральных процессоров, внося конструктивные изменения на уровне микросхем в материнские платы и сами процессоры. Позже появились независимые разработки, позволяющие программно, но в ручном режиме увеличить рабочие частоты ядер процессоров. Сегодня контроль над частотами добровольно отдали в руки пользователей сами производители, реализовав его через специальные технологии.

Теперь частоты процессоров автоматически регулирует сама система и выбирает самые оптимальные режимы для эффективного выполнения поставленных пользователем задач. Как именно это происходит – читайте ниже.

Как осуществляется регулировка частоты процессора

Высокие тактовые частоты необходимы процессору, поскольку определяют вычислительную мощность. Но параллельно повышение производительности сказывается на характеристиках всей системы. Увеличивается энергопотребление, вследствие чего интенсифицируется нагрев. В таких условиях система может потерять стабильность и под угрозой окажется безопасность всего ПК.

Поэтому с появлением новейших многоядерных процессоров с высокой мощностью остро встала необходимость управления рабочими частотами. Это позволило компьютеру работать оптимально. То есть при увеличении количества и сложности задач, возложенных на процессор, повышается его частота. А при уменьшении нагрузок процессор сбавляет частоты, следовательно, понижается уровень энергопотребления и спадает степень нагрева как самого чипа, так и окружающего пространства внутри корпуса.

Изначально динамические частоты (изменяющиеся), предусматривались для регулировки рабочих параметров системы. Однако позже, под влиянием современных тенденций и заинтересованности пользователей в разгоне компьютерного оборудования, производители стали выпускать процессоры с разблокированным множителем. Выгода подобного решения стала очевидной: пользователям больше не требовалось прилагать дополнительных усилий для разгона частот процессора, процедура стала массовой и общедоступной.

Однако управление частотами процессора – дело тонкое и ответственное, поэтому для безопасного и эффективного регулирования частот производителями процессоров были созданы фирменные опции. С ними и познакомимся ближе.

Аппаратный алгоритм от Intel

Впервые аппаратный алгоритм с названием Turbo Boost появился в CPU с маркировкой Core i7-900 с 4 ядрами и частотой от 2,66 до 3,2 ГГц. Версия 1.0 способствовала разгону процессора максимум на 300 МГц. На то время и это было значимым шагом.

В 2010 г. была представлена версия Turbo Boost 2.0, которая сохраняет актуальность и сейчас, и эффективно работает даже в новейших процессорах 11 поколения.

Читайте так же:
Регулировка омывателя фар тигуан

Главные принципы регулировки частот CPU Intel – это недопущение потери стабильности и удержание показателей тепловых характеристик в рамках, предусмотренных производителем. Для этого технология опирается на два параметра:

  • PL1 – заводской лимит энергопотребления, который стал базовым значением для реализации технологии.
  • PL2 – абсолютный предел, который по настройкам производителя на 25 % выше заводского базового уровня, но не более.

Чтоб защитить микрочип от перегрузки, алгоритм работает в режиме PL2 небольшой период времени, после происходит плавный откат к базовому режиму. При этом на пике производительности выполняется постоянный контроль температур, поэтому для разгона очень важно наличие производительной системы процессорного охлаждения.

Помимо основной технологии, процессоры Intel новейшего поколения обладают несколькими дополнительными технологиями, которые оптимизирую работу процессора в режиме повышенных частот.

Так, например, алгоритм Turbo Boost Max 3.0 определяет наиболее производительные из ядер CPU и перераспределяет нагрузку с учетом их возможностей. Надстройка Velocity Boost отслеживает степень нагрева ядер и контролирует работу процессора на повышенных частотах, пока значение не достигнет установленных производителем лимитов. Так у семейства Comet Lake предел составляет 70 °C.

Алгоритм контроля частот от AMD

Технология называется Precision Boost. Она реализует разгон CPU с интервалом шага 25 МГц, благодаря чему и называется «Точным разгоном». У конкурентов количественные характеристики разгона как правило кратны 100 МГц, но есть варианты и большего шага – 133 МГц.

Алгоритм Precision Boost появился у компании AMD одновременно с архитектурой Zen, последней и актуальной сегодня версией является Precision Boost 2.0.

В отличие от алгоритмов компании Intel, технология точного разгона от AMD работает сразу с тремя лимитами:

  • максимальной частотой;
  • энергопотреблением;
  • температурой ядер.

Пределом разгона является достижение критического значений по любому из этих показателей. Остальные лимиты остаются на уровнях ниже критических. Показатели лимитов с завода прописаны на подпрограммном уровне каждого процессора.

Таким образом современные технологии дают возможность пользователю наслаждаться высокой производительностью системы, оснащенной новейшими мощными процессорами и не заботиться о ручных настройках частот и связанных с этим рисков.

Однако, несмотря на наличие штатных и вполне эффективных систем поднятия частот, компании-производители все еще выпускают процессоры со свободным множителем. Эти модели предназначены для компьютерных энтузиастов, которые предпочитают самостоятельно оперировать частотами и добиваться от своих систем максимальной производительности в практических или чисто “спортивных” целях.

Готовы разогнать процессоры AMD Ryzen 7-ой серии? Узнай, чего ожидать!

Регулировка скорости вращения двигателя

Скорость вращения ротора двигателя переменного тока можно менять с помощью:

  • Изменения частоты питающего напряжения;
  • Переключения полюсов в двигателях соответствующей конструкции;
  • Изменения силы питающего тока (в очень узких пределах);
  • Используя специфически двигатели, например Штаге-Рихтера.

В широких пределах регулируется скорость двигателей постоянного тока, но они редко используются из-за дороговизны изготовления и обслуживания. На сегодня, развитие электронных преобразователей сделало наиболее экономически эффективным способом регулирования частоты вращения ротора двигателя использование преобразователей частоты питающего напряжения (ПЧ). Особенно когда речь идёт о регулировании частоты вращения в уже существующей установке.

Читайте так же:
Автомобиль москвич 412 регулировка зажигания

Основные преимущества ПЧ:

  • Регулирование частоты вращения в широких пределах — от нуля до предела механической стойкости установки;
  • Возможность плавного старта и останова двигателя;
  • Уменьшение ударных токовых нагрузок во время старта и останова двигателя;
  • Простое включение в контур автоматического регулирования;
  • Высокий коэффициент мощности.

Основные недостатки ПЧ:

  • Высокая стоимость;
  • Потери энергии 2-10%;
  • Наличие большого количества гармонических составляющих как в токе двигателя, так и в потребляемом от сети токе;
  • Излучение электромагнитных помех;
  • Необходимость поддержания температурного режима;
  • Необходимость проведения периодического обслуживания ПЧ.

Исходя из наличия недостатков, само по себе использование ПЧ не гарантирует положительного экономического эффекта. Мало того, бездумное использование ПЧ может принести убытки.

В связи с тем, что участие в ОПРЧ является обязательным для всех электростанций, а другие виды регулирования частоты являются оплачиваемой услугой, необходимо осуществлять мониторинг участия электростанций в регулировании.

Мониторинг ОПРЧ [ править | править код ]

В СО ЕЭС контролируется участие генерирующего оборудования в ОПРЧ. Для этого на объектах генерации создаются системы, позволяющие автоматически собирать данные для анализа участия в первичном регулировании, отправлять их в СО ЕЭС, а также производить автоматический анализ участия генерирующего оборудования в первичном регулировании непосредственно на объекте [14] .

Анализ участия в ОПРЧ производится в соответствии с методикой [15] СО ЕЭС. В СО ЕЭС ведутся работы по автоматизации анализа участия генерирующего оборудования в ОПРЧ, для чего были разработаны формализованные критерии участия генерирующего оборудования в ОПРЧ [16] .

Мониторинг НПРЧ [ править | править код ]

Для мониторинга НПРЧ в СО ЕЭС существуют специальные системы, позволяющие контролировать корректность участия генерирующего оборудования в НПРЧ в автоматическом режиме. Для предоставления данных для этих систем на объектах генерации собираются измерения частоты и мощности, а также дополнительные параметры в соответствии с требованиями и отправляются в СО ЕЭС.

Контроль участия генерирующего оборудования в НПРЧ осуществляется в соответствии со следующими математически формализованными критериями [17] :

1. Непредоставление информации

2. Несоответствие шага по времени передаваемых параметров требуемому

3. Непредоставление диапазона первичного регулирования

4. Несоответствие дискретности регистрации измерений требуемой

5. Неавтоматический режим САУМ

6. Недостаточная точность поддержания мощности

7. Несоответствие величины мертвой полосы/статизма первичного регулирования требуемой

8. Отсутствие адекватной/должной реакции при изменении частоты

9. Наличие колебательного процесса

Существуют системы для аналогичного анализа участия генерирующего оборудования в НПРЧ непосредственно на объекте [18] .

Мониторинг АВРЧМ [ править | править код ]

Для мониторинга АВРЧМ в СО ЕЭС собираются посекундные данные с объектов генерации по выделенным цифровым каналам. В СО ЕЭС эти данные анализируются и делается вывод о корректном или некорректном участии в АВРЧМ.

Узлы, функционал, сборка

Сейчас мы пошагово разберем, как работает автоматика для электрокотла и как её собрать в единый узел, отвечающий за безопасность и управление агрегатом. Такая система обойдет вам гораздо дешевле заводской сборки, к тому же, так вы будете знать её досконально и без труда проведете техобслуживание.

Читайте так же:
Термостат для регулировки воды в кране

Пусковой узел

Любая электрическая схема начинается с устройства для разрыва цепи и в нашем случае, это вводный трехфазный трехполюсный автомат ≈380 V. Только на этом моменте очень часто допускают ошибку — вместо K3 устанавливают три отдельных однополюсных автомата. Это недопустимо, так как по отдельности каждый прибор отвечает за отдельно взятую фазу, а вот K3 при повреждении нагревательного элемента по любой из трех фаз, обесточивает их все одновременно. На практике это означает, что вас даже не успеет ударить током, если произойдет замыкание на корпус.

После установки трехполюсного автомата все фазы нужно разделить и для этого используются электромагнитные контакторы типа пускателей. Именно они будут отвечать за управление электрическими котлами, а если быть точнее, то за автоматическую коммутацию электрической сети. Для чего это нужно: если автомат включается и выключается вручную, флажками на корпусе, то пускатель делает это сам, без вашего вмешательства, при поступлении на него импульса от соответствующего датчика.

Однополюсные контакторы должны быть не в виде тройного блока, а по отдельности, только не покупайте или не ставьте из своей заначки старые пускатели типа КМИ, ПМЛ или ПМА и дело здесь не в громкости щелчков при переключении, но об этом чуть ниже. У вас будет возможность упрощенной регулировки мощности электрокотла — в этом и состоит основное преимущество такого варианта. Далее по схеме подключаются ТЭНы или электроды отопителя – здесь все просто.

Регулировка мощности котла

Напряжение с автоматов подается на пускатели, а с них – на греющие элементы и вот именно в этом узле схемы и должна быть установлена регулировка мощности электрического котла. Будет подаваться напряжение на греющий элемент котла или нет – зависит от катушки контактора (пускателя), поэтому в этом звене установим возможность для смены режима обогрева. Для этого нужно на контакт, обозначенный на корпусе, как A2 подключить ноль, а на клемму, обозначенную, как A1 – микровыключатель для разрыва цепи. Впрочем, A1 и A2 можно менять в цепи местами – это не имеет какого-то значения. Все три пускателя должны быть подключены только от одной фазы – её можно взять с нижней клеммы любого из трех автоматов.

Эти три кнопки позволят котлу работать в семи режимах. Допустим, у вас тэновый котел, с тремя нагревательными элементами разной мощности – назовем их условно №1, №2 и №3 — тогда появляется возможность комбинировать температуру воды на выходе. Вот как будут выглядеть режимы:

  1. №1, №2 и №3 – включены (максимальная мощность).
  2. №1 – включен, №2 и №3 отключены.
  3. №2 – включен, №1 и №3 – отключены.
  4. №3 – включен, №1 №2 – отключены.
  5. №1 и №2 – включены, №3 – отключен.
  6. №1 и №3 – включены, №2 – отключен.
  7. №2 и №3 – включены, №1 – отключен.

В зависимости от температуры за окном вы можете выбрать любой из этих режимов, добавляя или убавляя мощность котла для подогрева теплоносителя.

Читайте так же:
Регулировка редуктора томасетто 2 поколения на инжектор

Предельный и управляющий термостаты

Такое устройство, как на фотографии вверху, сейчас устанавливают не только на электрических, на и на газовых, а порой и на твердотопливных котлах. Оно необходимо для экстренных ситуаций, когда что-то не сработает в электронике и нагрев теплоносителя не остановится при заданной температуре. Такое может произойти, когда, к примеру, засорится циркуляционный насос и образуется застой жидкости в котле или по каким-то другим причинам. То есть, вода по умолчанию будет греться до предела на термостате, а это обычно 95°C, после чего срабатывает предохранительный механизм и разрывается цепь, но вы можете задать предел температуры самостоятельно.

Так как в этом приборе в экстремальной ситуации не предусмотрен предохранительный клапан то здесь просто разъединяется цепь управляющей фазы. Поэтому прибор нужно подключить именно так, как показано на нижнем изображении, чтобы он мог разорвать цепь управляющей фазы.

Для того чтобы отключать и запускать нагревательные элементы без вашего участия, в схему нужно добавить ещё один прибор – это термостат управления (только не путайте его с предельным). На изображении видно, что он подключен к основной фазе перед предельным устройством. Это означает, что он будет отдавать команды. То есть, рабочий термостат будет срабатывать при определенной температуре, которую вы ему зададите – процесс происходит автоматически, без вашего участия.

В том случае, когда вы видите, что цепь разомкнута (котел не греет), а температура меньше заданной вами, это означает, что сработал не рабочий, а предельный термостат. Это говорит о том, что где-то возникли неполадки и вам нужно найти неисправность, устранить её и лишь после этого запускать котел заново.

Помимо рабочего в цепь управляющей фазы также можно подключить комнатный термостат, показанный на схеме под №3. Он будет реагировать на температуру в помещении, и от него будет зависеть работа прибора №2, так как рабочий термостат не сможет разорвать цепь без «согласия» комнатного датчика.

Что такое гармонические искажения электросети

Параметры промышленной питающей электросети должны соответствовать требованиям ГОСТ 13109-97 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электроэнергии в системах электроснабжения общего назначения». Реальная электрическая сеть и ее параметры отличаются от идеальных. Влияние различных факторов приводит к отклонению параметров сети от норм и ухудшению качества электроэнергии.

Параметры питающей сети, не соответствующие нормам (повышенное или пониженное напряжение, всплески и провалы напряжения, искажение синусоидальной формы напряжения и т.д.), воздействуя на подключенных электропотребителей, могут нарушать их нормальную работу и даже выводить их из строя.

Среди показателей качества электроэнергии (КЭ) стандартом определены два параметра, характеризующие степень искажения формы синусоиды напряжения в электросети:

коэффициент искажения синусоидальности кривой напряжения

коэффициент искажения синусоидальности кривой напряжения

U(1) — действующее значение междуфазного (фазного) напряжения 1-ой гармоники (основной частоты);

U(2), U(3) : U(40) — действующие значения междуфазного (фазного) напряжения высших гармоник, кратных по частоте основной гармонике (при определении коэффициента искажения синусоидальности KU стандарт предписывает учитывать гармоники только от 2-ой до 40-й и не учитывать гармоники, уровень которых менее 0,1%);

Читайте так же:
Скутер регулировка пускового обогатителя

* Другие названия KU — «коэффициент гармоник», «коэффициент нелинейных искажений». В иностранной литературе обозначается как THD (Total Harmonic Distortion — коэффициент суммарных гармонических искажений).

коэффициент n-ой гармонической составляющей напряжения

коэффициент n-ой гармонической составляющей напряжения

n — номер гармонической составляющей, кратной основной частоте, в спектре сетевого напряжения.

В результате сложения основной (1-ой) гармоники номинальной частоты питающей сети с появившимися по разным причинам высшими гармониками форма синусоиды искажается.

Таким образом, коэффициент искажения синусоидальности KU определяет долю суммарного напряжения высших гармоник в питающем напряжении электросети по отношению к напряжению основной частоты, а коэффициент n-ой гармонической составляющей KU(n) характеризует вклад конкретной гармоники в общие искажения.

Согласно ГОСТ 13109-97, нормально допустимое значение коэффициента искажения синусоидальности кривой напряжения для сетей напряжения 0,38 кВ составляет 8%, предельно допустимое значение составляет 12%. Нормально допустимое значение коэффициента n-ой гармонической составляющей для каждой гармоники приведено в ГОСТ 13109-97, например, для 5-ой гармоники — 6,0%, для 7-ой гармоники — 5% и т.д. Предельно допустимое значение коэффициента n-ой гармонической составляющей для каждой гармоники в 1,5 раза больше нормально допустимого.

Как настроить автомобильную рацию?

Мобильные радиостанции настраивают так же, как портативные — программируют частоты, выбирают канал, субтоны CTCSS и DCS, мощность, уровень шумоподавления, дополнительные опции. Кроме этого, необходимо проверить и настроить коэффициент стоячей волны (КСВ) автомобильной антенны. Это обязательно, так как при слишком высоком КСВ связи не будет, а радиостанция может перегреться и выйти из строя. При настройке КСВ изменяют длину антенного штыря. Некоторые антенны при настройке обрезают до нужной длины, в комплекте с ними идут таблицы соответствия длин и частот (карты обрезки), например, такие:

Карта обрезки.jpg

Настройка КСВ.jpg

Для замера коэффициента стоячей волны нужен специальный прибор — КСВ-метр. Его устанавливают в разрыв кабеля между антенной и радиостанцией. При необходимости измеритель калибруют: в режиме FWD устанавливают стрелку в нулевое положение. Далее при включенной передаче измеритель переключают в режим REF и смотрят значение КСВ. Замеры производят для нескольких частот. Если минимальный КСВ на графике лежит ниже рабочей частоты, то нужно укоротить штырь антенны, если выше, то удлинить. Так выполняют настройку раций дальнобойщиков диапазона CB и других автомобильных раций. Настройка стационарных радиостанций отличается тем, что описанные манипуляции производят с базовой антенной.

После покупки пользователям приходится менять заводские установки на те, которые им нужны. Если нет уверенности или возникают трудности, особенно с настройкой частот рации, то стоит обратиться к специалистам. Компания К-Радио консультирует заказчиков, как правильно настроить купленные рации. Также мы оказываем услуги по пост- и предпродажной настройке радиостанций всех типов, прошивке частот радиостанций, установке кодов CTCSS и DCS и т. д.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector