1ton-auto.ru

Тон Авто
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы и выбор потенциометра

Потенциометр состоит из следующих элементов, указанных на схеме:

  • резистивное вещество, определяющее номинал сопротивления с вмонтированными по обоим краям выводами 1 и 2;
  • подвижный ползунок, соединенный с контактом 3, передвигаемый для увеличения-уменьшения сопротивления;
  • ручка для управления.

Потенциометр (переменный резистор) оснащён ручным управлением. По центральной оси выводится ручка, при повороте которой можно изменить положение ползунка. Потенциометры Meyertec встроены в пластиковый корпус для монтажа в отверстие 22,5 мм.

Принцип действия потенциометра заключается в следующем. При механическом повороте ручки ползунок передвигается по плоскости подковы с резистивным веществом. Вследствие этого сопротивление изменяется между выводом 3 и выводами 1 и 2. Если на выводы 1 и 2 подать ток, то между ними и выводом 3 получается выходное напряжение. Таким образом потенциометр выполняет функции делителя напряжения.

Принцип действия и устройство реостата

Из любого учебника физики за 8 класс нам известно, что принцип действия реостата основан на законе Ома для участка цепи, а именно электрический ток, протекающий через цепь, изменяется в зависимости от уровня сопротивления, с которым он сталкивается при неизменном напряжении источника. Низкое сопротивление означает высокий электрический ток, так как ничто не препятствует току, а высокое сопротивление означает низкий электрический ток. Это свойство электрических цепей может быть использовано для настройки характеристик цепи в соответствии с конкретными требованиями.

При этом, сопротивление материала проводника (скажем, проволоки) зависит линейно от её длины и обратно пропорционально площади поперечного сечения, то есть верна формула: R = (ρ * l) / S, где

  • ρ — удельное сопротивление материала проводника;
  • l — длина проводника;
  • S — площадь поперечного сечения проводника.

Таким образом, если площадь поперечного сечения остается постоянной, увеличение длины увеличивает сопротивление. Как показано на рисунке 1, ползунок реостата перемещается с помощью резистивного элемента. Он перемещается в 2 направлениях (туда/обратно). Соответственно изменяется эффективная длина. По мере продвижения ползунка к выходному выводу эффективная длина уменьшается, вызывая падение сопротивления и увеличение силы тока.

Читайте так же:
Регулировка кулисы маз 500

В простейшем типе реостата используется керамический цилиндр с намотанной по всей длине стальной проволокой (или другим материалом/сплавом с большим удельным сопротивлением), причем эта проволока имеет постоянное поперечное сечение по всей длине. Проволока покрыта тонким слоем не проводящей ток окалины, поэтому витки её изолированы друг от друга.

Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок (подвижный контакт). Своими контактами он прижат к виткам обмотки.

Слой окалины с проволоки снимается в результате трения контактов ползуна о витки обмотки. Электрический ток от витков проволоки через контакты ползунка течет в стержень.

Из конструктивных особенностей нужно ещё отметить, что внутри реостат всегда полый. Это необходимо, поскольку при протекании электрического тока реостат нагревается, а эта полость обеспечивает быстрое охлаждение.

Ползунок можно перемещать вдоль стержня, чтобы создать бо́льшее или ме́ньшее сопротивление в электрической цепи. При изменении положения ползунка реостата изменяется длина той части обмотки, через которую проходит ток — а вследствие этого изменяется и сопротивление реостата. То есть, увеличение длины проволочного стержня создает бо́льшее сопротивление, что приводит к уменьшению тока, протекающего через цепь, а уменьшение — наоборот, создает ме́ньшее сопротивление, что приводит к увеличению силы тока в цепи.

Общая структура линейного реостата

Рисунок 1. Общая структура простого ползункового реостата

Каждый реостат рассчитан на определённое сопротивление и на наибольшую допустимую силу тока, превышать которую не следует, так как обмотка реостата накаляется и может перегореть. Сопротивление реостата и наибольшее допустимое значение силы тока указаны на реостате.

Кто изобрел реостат?

Разработка реостата иногда приписывается Чарльзу Уитстону, британскому изобретателю XIX века, который, помимо прочего, привнес в науку ряд открытий, связанных с электричеством. Уитстон, безусловно, работал с электрическими цепями и многое узнал о электрическом сопротивлении и о том, как им можно манипулировать в процессе работы. Основные конструкции реостатов, разработанные в то время, используются и сегодня.

Читайте так же:
Чем регулировать давление крови народными средствами

Реостат на основе рисунка Чарльза Уитстона

Реостат на основе рисунка Чарльза Уитстона

Изготовление конструкции

Схема паяется на печатной плате из фольгированного стеклотекстолита. Плата не содержит перемычек, а два кажущихся разрыва в цепи массы будут местами пайки корпуса кнопок. Монтаж следует начать с припаивания интегральных микросхем, потому что это делается гораздо удобнее, когда нет выступающих элементов от другой стороны. Порядок пайки остальных элементов произвольный. Схему необходимо питать напряжением 5 В, желательно стабилизированным.

Цифровой кнопочный потенциометр - регулятор громкости

Готовые для пайки платы

Определенным неудобством является программирование микроконтроллера, так как здесь не предусмотрено разъема программирования. Чтобы запрограммировать МК U1 — подпаяйте аккуратно к его выводам тонкие провода, которые затем будут подключены к программатору. Вывод VB (VBias) соединен с массой схемы, однако, если необходимо подключение этого входа к другой полярности, просто вырежьте фрагмент дорожки между выводами на плате. Когда потенциометр работает для регулировки громкости предусилителя и амплитуда сигнала, что на него подается не превышает 0,5 вольта, то выход VB следует поляризировать относительно отрицательного напряжения -5 В относительно массы. Это обеспечит правильную передачу аналогового сигнала.

Цифровой кнопочный потенциометр - регулятор громкости

кнопочный регулятор — потенциометр

Следует иметь в виду, что потенциометр имеет максимально допустимое напряжение, которое может присутствовать на любом из контактов (относительно GND) от -0.1 до +7 В для Vb = 0 и от -5 до +7 В для Vb = -5 В. При эксплуатации регулятора следует позаботиться о том, чтобы не превышать указанные допустимые границы напряжений. Когда вы питаете схему от отдельного БП, необходимо убедиться, что масса потенциометра (GND) и масса схемы назначения связаны между собой.

На рисунке показаны настройки фузов для микроконтроллера ATTiny13

Результат

Готовый многооборотный резистор установлен на своё место на панели. Работать он будет идентично переменному резистору заводского изготовления, а что до внешнего вида, так через панель не видать, что там за конструкция. А вот экономия денежных средств налицо.

Читайте так же:
Yamaha xjr 1300 регулировка клапанов

Сознаюсь, изначально пытался обойтись без соединительной втулки, паял шток напрямую к головке регулировочного винта, сделал несколько попыток, но полной соосности сопрягаемых элементов добиться не удалось. А со втулкой никаких проблем. Итак вопрос с многооборотными резисторами для собственных нужд решён. Автор Babay iz Barnaula.

Форум по обсуждению материала ПОТЕНЦИОМЕТР ИЗ МНОГООБОРОТНОГО ПОДСТРОЕЧНОГО РЕЗИСТОРА

Информация по самостоятельному ремонту и прошивке транзистор-тестера LCR-T4(T3) NoStripGrid.

Изучение принципа действия и параметров кварцевого генератора, выбор КГ для различных устройств.

Тристабильный мультивибратор — схема трёхканального переключателя LED.

Модернизируем промышленный графический эквалайзер Прибой Э-014С.

2 Логика работы и схема подключения цифрового потенциометра X9C103 к Arduino

Между 0 и максимальным значением с шагом 1/100 от максимума можно регулировать сопротивление на третьем «подвижном» выводе.

Управление положением «подвижного» вывода осуществляется с помощью серии отрицательных импульсов. Каждый импульс смещает значение сопротивления на 1 шаг в сторону увеличения или уменьшения.

Потенциометр управляется по трём линиям:

Название выводаНазначениеПримечание
CSВыбор устройстваLOW — устройство активно
INCИзменение сопротивления выходаОтрицательные импульсы
U/ DНаправление измененияU (вверх) – если напряжение на ножке микросхемы HIGH, D (вниз) – LOW

Вот так выглядит временная диаграмма управляющих сигналов:

Временная диаграмма управления потенциометром X9C102, X9C103, X9C104 Временная диаграмма управления потенциометром X9C102, X9C103, X9C104

Здесь VW – напряжение на центральном выводе.

Давайте соберём схему, как показано на рисунке:

Схема подключения цифрового потенциометра X9C102, X9C103, X9C104 к Arduino Схема подключения цифрового потенциометра X9C102, X9C103, X9C104 к Arduino

Модуль требует питание +5 В.

Структурная схема микросхемы цифрового потенциометра AD5206 Структурная схема микросхемы цифрового потенциометра AD5206 Распиновка микросхемы AD5206 Распиновка микросхемы AD5206 Назначение выводов микросхемы AD5206 Назначение выводов микросхемы AD5206

AD5206 – это 6-канальный цифровой потенциометр. Это означает, что он имеет шесть переменных резисторов (потенциометров), встроенных для независимого электронного управления. Для каждого из шести встроенных переменных резисторов на корпусе микросхемы выделено по три вывода, их можно подключить так же, как если бы вы использовали обычный механический потенциометр. Выводы отдельных переменных резисторов обозначены как Ax, Bx и Wx, например, A1, B1 и W1. В этом руководстве мы будем использовать каждый потенциометр в качестве делителя напряжения, подключив один крайний вывод (вывод A) к напряжению питания, второй крайний вывод (вывод B) – к шине земли, а со среднего вывода (Wiper) будем брать изменяющееся напряжение. В этом случае AD5206 обеспечивает максимальное сопротивление 10 кОм, сопротивление изменяется в 255 шагов (максимум при 255, минимум при 0).

Читайте так же:
Автоматическая регулировка параметров изображения

Резистор и сопротивление

Обозначения резисторов

Это справедливо и для большего количества соединённых последовательно резисторов:

Цепь из последовательно соединённых резисторов будет всегда иметь сопротивление большее, чем у любого резистора из этой цепи.

При последовательном соединении резисторов изменение сопротивления любого резистора из этой цепи влечёт за собой как изменение сопротивления всей цепи так и изменение силы тока в этой цепи.

Мощность при последовательном соединении

R = 200 + 100 + 51 + 39 = 390 Ом

Учитывая напряжение в цепи, равное 100 В, по закону Ома сила тока будет составлять

I = U/R = 100 В/390 Ом = 0,256 A

На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле:

P = I 2 x R = 0,256 2 x 390 = 25,55 Вт

Таким же образом можно рассчитать мощность каждого отдельно взятого резистора:

P1 = I 2 x R1 = 0,256 2 x 200 = 13,11 Вт;
P2 = I 2 x R2 = 0,256 2 x 100 = 6,55 Вт;
P3 = I 2 x R3 = 0,256 2 x 51 = 3,34 Вт;
P4 = I 2 x R4 = 0,256 2 x 39 = 2,55 Вт.

Если сложить полученные мощности, то общая Р составит:

Робщ = 13,11 + 6,55 + 3,34 + 2,55 = 25,55 Вт

Параллельное соединение резисторов

Расчет параллельного сопротивления двух параллельно соединённых резисторов R1 и R2 производится по следующей формуле:

Параллельное соединение трёх и более резисторов требует более сложной формулы для вычисления общего сопротивления:

Сопротивление параллельно соединённых резисторов будет всегда меньше, чем у любого из этих резисторов.

Параллельное соединение резисторов часто используют в случаях, когда необходимо сопротивление с большей мощностью. Для этого, как правило, используют резисторы с одинаковой мощностью и одинаковым сопротивлением. Общая мощность, в таком случае, вычисляется умножением мощности одного резистора на количество параллельно соединённых резисторов.

Мощность при параллельном соединении

1/R = 1/200 + 1/100 + 1/51 + 1/39 ≈ 0,06024 Ом
R = 1 / 0,06024 ≈ 16,6 Ом

Используя значение напряжения 100 В, по закону Ома рассчитывается сила тока

Читайте так же:
Регулировка зажигания мопеда зид

I = U/R = 100 В x 0,06024 Ом = 6,024 A

Зная силу тока, мощность резисторов, соединенных параллельно, определяется следующим образом

P = I 2 x R = 6,024 2 x 16,6 = 602,3 Вт

Расчет силы тока для каждого резистора выполняется по формулам:

На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.

Существует еще одна формула, позволяющая рассчитать мощность при параллельном подключении резисторов:

P1 = U 2 /R1 = 100 2 /200 = 50 Вт;
P2 = U 2 /R2 = 100 2 /100 = 100 Вт;
P3 = U 2 2/R3 = 100 2 /51 = 195,9 Вт;
P4 = U 2 2/R4 = 100 2 /39 = 256,4 Вт

Принцип работы

Функционирование потенциометра заключается в том, что на один из выводов подается напряжение 5 вольт, при этом второй край должен быть заземлен. Средний вывод подключен к специальному контроллеру, выдающему необходимую информацию по дроссельной заслонке. При полностью закрытой задвижке напряжение не превышает 0,7 В, а в открытом положении достигает 4 В.

датчик потенциометра

На корпусной части заслонки прикрепляется датчик потенциометра посредством винтовой фиксации. С осью вращения приспособление взаимодействует при помощи специального отверстия в гнезде индикатора. Чтобы правильно настроить устройство, необходимо подключить разъемы датчика, активировать зажигание, измерить напряжение на входе. Этот показатель не должен превышать 0,7 вольта. В случае завышенного показания следует отрегулировать крепление индикатора при помощи винтов до нормы. Если имеются сомнения в том, какой потенциометр подобрать, желательно обратиться к специалисту или в сервисный центр.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector