1ton-auto.ru

Тон Авто
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Способы регулирования скорости гидропривода

Способы регулирования скорости гидропривода.

Способы регулирования скорости гидропривода. 23 июля 2018

Скорость движения исполнительных органов объемного гидропривода зависит от расхода жидкости, поступающего в рабочую камеру, и от объема этой камеры, поэтому возможности регулирования скорости гидроприрвода основаны на различных способах изменения расхода, либо на изменении объема рабочей камеры. Рассмотрим подробнее каждый из возможных способов регулирования скорости движения исполнительных механизмов гидравлического привода.

Лошадиная сила и Ватт

Понятие «лошадиная сила» впервые использовал известный изобретатель и инженер конца 18-го – начала 19-го века Джеймс Уатт. Именно он придумал паровой мотор, а также первым просчитал мощность, которую развивает лошадь, поднимая уголь из шахты.

С тех пор, а это уже более чем 200 лет, развиваемая одной лошадью мощность, то бишь одна лошадиная сила, составляет 33 тыс. футов в мин. Эта мера используется в некоторых мировых государствах, но если говорить о Европе, то большее распространение там получила еще одна единица измерения мощности, именуемая ваттами. Ученые даже вывели формулу, и в соответствии с ней 1 л.с. = 746 Вт. Говоря иными словами, 1 кВт, равный 1 тыс. ваттам, соответствует 1 л.с., которая была умножена на 1,34.

3. Нужно ли переплачивать за более дорогой преобразователь частоты?

Этот вопрос сложный и ответить на него не так легко, как хотелось бы, но мы, как минимум, попробуем внести ясность.

На цену преобразователя частоты в общем случае влияет:


• Метод управления, реализованный в ПЧ, скалярный или векторный

В основе скалярного метода управления лежит принцип постоянства отношения U/f=const. Устройства, реализующие скалярный метод управления, считаются более простыми и в общем случае подходят для управления нагрузкой с низким пусковым моментом на валу электродвигателя.

В основе преобразователей частоты, реализующих векторный режим управления, лежит значительно более сложная математическая модель, с постоянным отслеживанием или расчетом положения вала электродвигателя для поддержания постоянства крутящего момента. Скалярный режим управления в таких устройствах поддерживается по умолчанию, а векторный режим требует пользовательского программирования.


• Наличие встроенных интерфейсов и функционала

Как и в любой технике, преобразователь частоты содержит кроме основного функционала, дополнительные функции, встроенные интерфейсы удаленного управления, некоторые модели содержат в себе полноценные функции ПЛК. Дополнительный функционал – это плюс, но в первую очередь необходимо оценить необходимость такового, прежде чем сравнивать цену двух устройств.


• Плата за бренд

В этом пункте мы не раскрыли ничего нового, действительно переплата за бренд существует, ничего личного, это просто маркетинг. Но мы убеждены, переплата за бренд должна быть разумной, поэтому предлагаем, в том числе, преобразователи частоты от компании Delta Electronics которая входит в тройку лидеров по количеству производимых частотных приводов. Кроме своего имени, отсчитывающего время с 1971 года, компания Delta Electronics может предложить широкую номенклатуру частотных преобразователей: экономичные, компактные, универсальные, специализированные для лифтов, для насосов и вентиляторов.

Основы применения частотных преобразователей в насосных установках

В данной статье мы попытаемся разобраться с основами применения преобразователей частоты (частотно-регулируемого привода) в насосных установках.

Читайте так же:
Как отрегулировать фары на семерке

Насосы и насосные установки

Определимся для начала с основными понятиями и принципами.

Насосная установка – это совокупность насосных агрегатов, трубопроводов, запорно-регулирующей арматуры, КИП, устройств управления и защиты.

Насосная установка характеризуется двумя основными параметрами: подача и напор.

Подача – это объем жидкости который способна перекачать насосная станция за единицу времени, измеряется в куб. метр / час.

Напор – это энергия необходимая для подъема жидкости на заданную высоту с преодолением сил трения в трубопроводной арматуре, измеряется в метрах. Напор и давление связаны между собой соотношением:

где H – напор; P – давление насоса; ρ – плотность жидкости; g – ускорение свободного падения.

Насосные установки по назначение делятся на:

  • Водопроводные (ВНС) – это насосные станции которые подают воду от водоема до очистных сооружений (ВНС I подъема) и от очистных сооружений в распределительную сеть трубопроводов (ВНС II подъема). Так же существуют промежуточные повысительные насосные станции, в случае когда необходимо создать достаточное давление для поднятия воды на требуемую высоту.
  • Канализационные (КНС) – перекачивают сточные воды к месту очистки.
  • Теплофикационные – предназначены для подачи горячей воды в системе горячего водоснабжения и отопления.
  • Технологические – насосные станции для перекачки различных жидкостей в технологических процессах.

Основы применения частотных преобразователей в насосных установках

Главная КНС Нижнего Новгорода

По виду рабочей камеры насосы делятся на динамические и объемные, те в свою очередь на лопастные, электромагнитные, трения, крыльчатые, роторные, возвратно-поступательные и другие.

В наше время чаще всего используются лопастные насосы: центробежные и осевые.

В основе работы центробежного насоса лежит действие центробежной силы на перекачиваемую жидкость. При вращении рабочего колеса жидкость приходит во вращение и под действием центробежной силы перемещается от центра колеса на периферию, а далее в напорную трубу.

Жидкость в осевом насосе перемещается вдоль оси насоса за счет воздействия лопастей рабочего колеса и создания разности давления под и над лопастью. По принципу работы он схож с пропеллером самолета или бытовым вентилятором.

Основной характеристикой насоса является зависимость напора от подачи, которая называется напорно-расходной.

Основы применения частотных преобразователей в насосных установках

Пример напорно-расходной характеристики насоса

В качестве электропривода насосов в основном используются асинхронные двигатели с короткозамкнутым ротором и синхронные двигатели переменного тока. Реже используются асинхронные двигатели с фазным ротором.

В статье мы рассмотрим работу насосных установок на примере центробежных насосов.

Режимы работы

Теперь рассмотрим режимы работы насосных установок и определимся от чего зависит тот или иной режим.

Режим работы насосных установок зависит либо от изменения расхода у потребителей, либо от притока сточной жидкости, в случае с канализационными насосными станциями.

Режимы водопотребления характеризуются временными графиками и бывают суточными, недельными, месячными и т.д.

Основы применения частотных преобразователей в насосных установках

Пример суточного графика водопотребления за трое суток

Подача насосных установок, работающих без промежуточных емкостей, должна быть равна потреблению. При увеличении потребления подачу необходимо увеличивать, при этом также увеличиваются потери напора в трубопроводах. Поэтому следует также увеличивать давление, которое развивают насосные установки. При уменьшении водопотребления следует снизить подачу и давление.

Читайте так же:
Мотоблок нева регулировка переключения передач

Ранее для регулирования характеристик насосных установок использовалось изменение числа работающих насосов и степени открытия задвижек. Теперь с появлением частотных преобразователей регулируется частота вращения рабочих колес насосов.

При работе с промежуточной (аккумулирующей) емкостью подача насосной установки отличается от потребления. В этом случае, если нет частотных преобразователей, насосные агрегаты включаются, когда уровень воды достиг минимальной отметки, и отключаются, когда уровень достигает верхней заданной отметки, и так далее по циклу.Таких циклов в сутки может быть до 50, а в некоторых случаях и до 100. Такое количество пусков, особенно для двигателей большой мощности, негативно сказывается на состоянии электроприводов.

Изменение характеристик центробежных насосов можно осуществить двумя способами: изменением степени открытия задвижки на напорном трубопроводе и изменением частоты вращения рабочего колеса насоса.

  • регулирование задвижкой (дросселирование) – уменьшая степень открытия задвижки, мы уменьшаем подачу насоса, напор перед задвижкой увеличивается, а после задвижки уменьшается из-за потери напора на запорной арматуре. Открывая задвижку, мы увеличиваем подачу, напор который создает насос уменьшается, а напор за задвижкой увеличивается. Этот способ крайне неэкономичный, так как большое количество энергии теряется на сопротивлении запорной арматуры.

Основы применения частотных преобразователей в насосных установках

Регулирование задвижкой

  • регулирование изменением частоты вращения насосов – при таком регулировании при снижении частоты вращения, кривая напорно-расходной характеристики насоса перемещается вниз. Подача, напор насоса и напор в трубопроводе одновременно уменьшаются. При увеличении частоты вращения насоса, увеличивается подача и напор насоса, и напор в сети.

Основы применения частотных преобразователей в насосных установках

Частотное регулирование

Данный способ регулирования является более экономичным, но требует применения частотных преобразователей.

При регулировании с помощью частотных преобразователей снижение энергопотребления равно потерям, которые обусловлены повышением напоров при работе насосов с постоянной частотой вращения.

Особенности работы насосов при изменении частоты вращения

При регулировании насоса изменением частоты вращения обеспечивается перемещение рабочей точки насоса по кривой характеристики трубопровода, а не насоса, как в случае с дросселированием. При этом избыточные напоры отсутствуют и обеспечивается минимальное энергопотребление.

Регулирование частоты вращения насосов в насосной установке дает возможность оптимально распределить нагрузки между насосами, выровнять их КПД и удерживать в зоне оптимальных КПД их рабочие точки, снизив затраты энергии к минимальным значениям.

При изменении частоты вращения насоса пропорционально изменяются и все его характеристики. Но при низкой частоте вращения порядка 10-15% от номинальной происходит нарушение зависимости между подачей и напором насоса. Его характеристики теперь нельзя представить в виде параболической кривой, а только россыпью точек. Потому диапазон регулирования частоты вращения насоса не должен выходить за предельную нижнюю границу.

Так же при работе насосов с пониженной частотой вращения могут возникнуть такие опасные явления как кавитация и помпаж.

Кавитация – это явление при котором поток жидкости перестает быть сплошным, сопровождающееся образованием пузырьков газов и паров жидкостей. Кавитация опасна дополнительными потерями электроэнергии и разрушением рабочих элементов насоса. Она может возникнуть в случае если существующий напор на всасывающем трубопроводе меньше требуемого. При снижении частоты вращения насоса, также в большую сторону увеличивается требуемое значение напора на всасывающем трубопроводе, что следует учитывать во избежание возникновения кавитации.

Помпаж – может возникнуть в насосах с неустойчивыми (лабильными) напорно-расходными характеристиками при пересечении лабильной характеристики насоса с характеристикой трубопровода в двух точках. В этом случае насос начинает попеременно работать с параметрами двух точек и вся система становится неустойчивой. Происходят гидравлические удары, резкое закрытие обратных клапанов, частое изменение потребляемой мощности и нестационарные режимы работы сети электроснабжения. Работа в таком режиме недопустима !

Читайте так же:
Регулировка предохранительного клапана компрессора

При оснащении насосных установок частотно-регулируемым приводом следует не забывать о том, что:

«Переменные», «подстраивающиеся», «изменяющиеся» ограничители оборотов также не редкость в наши дни. Обычно они устанавливают максимальные обороты ниже, когда автомобиль на холостом ходу или когда двигатель находится в фазе прогрева. В остальном цель у них идентична ранее описанным вариантам – не убить двигатель.

Предупреждение!

«Гонщикам» стоит зарубить на носу, что, если вы приближаетесь к отсечке, скажем, на второй передаче и хотите перейти на третью, но вместо этого «воткнули» первую , даже ограничитель не сможет предотвратить внезапную гибель мотора. Обороты скакнут за пределы, и в это мгновение с двигателем может случиться все что угодно! Ну разве что, осознав ошибку, вы за доли секунды не выключите сцепление. В общем, будьте внимательны!

Что такое частотно-регулируемый привод?

Что такое частотно-регулируемый привод?

Частотно-регулируемый привод (частотно-управляемый привод, ЧУП, Variable requency Drive, VFD) — система управления частотой вращения ротора асинхронного (синхронного) электродвигателя. Состоит из собственно электродвигателя и частотного преобразователя.

Преобразователь частоты (частотный преобразователь) — это устройство состоящее из выпрямителя (моста постоянного тока), преобразующего переменный ток промышленной частоты в постоянный и инвертора (преобразователя) (иногда с ШИМ), преобразующего постоянный ток в переменный требуемых частоты и амплитуды. Выходные тиристоры (GTO) или IGBT обеспечивают необходимый ток для питания электродвигателя. Для исключения перегрузки преобразователя при большой длине фидера между преобразователем и фидером ставят дроссели, а для уменьшения электромагнитных помех — EMC-фильтр. При скалярном управлении формируются гармонические токи фаз двигателя. Векторное управление — метод управления синхронными и асинхронными двигателями, не только формирующим гармонические токи (напряжения) фаз, но и обеспечивающим управление магнитным потоком ротора (моментом на валу двигателя).

Применение частотного привода

Преобразователи частоты применяются в:

  • судовом электроприводе большой мощности
  • прокатных станах (синхронная работа клетей)
  • высокооборотном приводе вакуумных турбомолекулярных насосов (до 100.000 об/мин.)
  • конвейерных системах
  • резательных автоматах
  • станках с ЧПУ — синхронизация движения сразу нескольких осей (до 32 — например в полиграфическом или упаковывающем оборудовании) (сервоприводы)
  • автоматически открывающихся дверях
  • мешалках, насосах, вентиляторах, компрессорах
  • бытовых кондиционерах
  • стиральных машинах
  • городском электротранспорте, особенно в троллейбусах.

Наибольший экономический эффект даёт применение ЧРП в системах вентиляции, кондиционирования и водоснабжения, где применение ЧРП стало фактически стандартом.

Преимущества применения ЧРП

  • Высокая точность регулирования
  • Экономия электроэнергии в случае переменной нагрузки (то есть работы эл. двигателя с неполной нагрузкой).
  • Равный максимальному пусковой момент.
  • Возможность удалённой диагностики привода по промышленной сети
  • распознавание выпадения фазы для входной и выходной цепей
  • учёт моточасов
  • старение конденсаторов главной цепи
  • неисправность вентилятора
  • Повышенный ресурс оборудования
  • Уменьшение гидравлического сопротивления трубопровода из-за отсутствия регулирующего клапана
  • Плавный пуск двигателя, что значительно уменьшает его износ
  • ЧРП как правило содержит в себе ПИД-регулятор и может подключатся напрямую к датчику регулируемой величины (например, давления).
  • Управляемое торможение и автоматический перезапуск при пропадании сетевого напряжения
  • Подхват вращающегося электродвигателя
  • Стабилизация скорости вращения при изменении нагрузки
  • Значительное снижение акустического шума электродвигателя, (при использовании функции «Мягкая ШИМ»)
  • Дополнительная экономия электроэнергии от оптимизации возбуждения эл. двигателя
  • Позволяют заменить собой автоматический выключатель
Читайте так же:
Регулировка клапанов компрессор зил

Недостатки применения частотного привода

  • Большинство моделей ЧРП являются источником помех (требуется установка Фильтров высокочастотных помех)
  • Сравнительно высокая стоимость для ЧРП большой мощности (окупаемость минимум 1-2 года)

Применение частотных преобразователей на насосных станциях

Классический метод управления подачей насосных установок предполагает дросселирование напорных линий и регулирование количества работающих агрегатов по какому-либо техническому параметру (например, давлению в трубопроводе). Насосные агрегаты в этом случае выбираются исходя из неких расчётных характеристик (как правило, с запасом по производительности) и постоянно функционируют с постоянной частотой вращения, без учета изменяющихся расходов, вызванных переменным водопотреблением. При минимальном расходе насосы продолжают работу с постоянной частотой вращения, создавая избыточное давление в сети (причина аварий), при этом бесполезно расходуется значительное количество электроэнергии. Так, к примеру, происходит в ночное время суток, когда потребление воды резко падает. Основной эффект достигается не за счет экономии электроэнергии, а благодаря существенному уменьшению расходов на ремонт водопроводных сетей.

Появление регулируемого электропривода позволило поддерживать постоянное давление непосредственно у потребителя. Широкое применение в мировой практике получил частотно регулируемый электропривод с асинхронным электродвигателем общепромышленного назначения. В результате адаптации общепромышленных асинхронных двигателей к их условиям эксплуатации в управляемых электроприводах создаются специальные регулируемые асинхронные двигатели с более высокими энергетическими и массогабаритностоимостными показателями по сравнению с неадаптированными. Частотное регулирование скорости вращения вала асинхронного двигателя осуществляется с помощью электронного устройства, которое принято называть частотным преобразователем. Вышеуказанный эффект достигается путём изменения частоты и амплитуды трёхфазного напряжения, поступающего на электродвигатель. Таким образом, меняя параметры питающего напряжения (частотное управление), можно делать скорость вращения двигателя как ниже, так и выше номинальной. Во второй зоне (частота выше номинальной) максимальный момент на валу обратно пропорционален скорости вращения.

Метод преобразования частоты основывается на следующем принципе. Как правило, частота промышленной сети составляет 50 Гц. Для примера возьмём насос с двухполюсным электродвигателем. С учетом скольжения скорость вращения двигателя составляет около 2800 (зависит от мощности) оборотов в минуту и даёт на выходе насосного агрегата номинальный напор и производительность (так как это его номинальные параметры, согласно паспорту). Если с помощью частотного преобразователя понизить частоту и амплитуду подаваемого на него переменного напряжения, то соответственно понизятся скорость вращения двигателя, и, следовательно, изменится производительность насосного агрегата. Информация о давлении в сети поступает в блок частотного преобразователя от специального датчика давления, установленного у потребителя, на основании этих данных преобразователь соответствующим образом меняет частоту, подаваемую на двигатель.

Читайте так же:
Нормативы регулировки стояночного тормоза

Современный преобразователь частоты имеет компактное исполнение, пыле и влагозащищённый корпус, удобный интерфейс, что позволяет применять его в самых сложных условиях и проблемных средах. Диапазон мощности весьма широк и составляет от 0,18 до 630 кВт и более при стандартном питании 220/380 В и 50-60 Гц. Практика показывает, что применение частотных преобразователей на насосных станциях позволяет:

  • экономить электроэнергию (при существенных изменениях расхода), регулируя мощность электропривода в зависимости от реального водопотребления (эффект экономии 20-50 %);
  • снизить расход воды, за счёт сокращения утечек при превышении давления в магистрали, когда расход водопотребления в действительности мал (в среднем на 5 %);
  • уменьшить расходы (основной экономический эффект) на аварийные ремонты оборудования (всей инфраструктуры подачи воды за счет резкого уменьшения числа аварийных ситуаций, вызванных в частности гидравлическим ударом, который нередко случается в случае использования нерегулируемого электропривода (доказано, что ресурс службы оборудования повышается минимум в 1,5 раза);
  • достичь определённой экономии тепла в системах горячего водоснабжения за счёт снижения потерь воды, несущей тепло;
  • увеличить напор выше обычного в случае необходимости;
  • комплексно автоматизировать систему водоснабжения, тем самым снижая фонд заработной платы обслуживающего и дежурного персонала, и исключить влияние «человеческого фактора» на работу системы, что тоже немаловажно.

По имеющимся данным срок окупаемости проекта по внедрению преобразователей частоты составляет от 3 месяцев до 2 лет.

Потери мощности при торможении электродвигателя

Во многих установках на регулируемый электропривод возлагаются задачи не только плавного регулирования момента и скорости вращения электродвигателя, но и задачи замедления и торможения элементов установки. Классическим решением такой задачи является система привода с асинхронным двигателем с преобразователем частоты, оснащённым тормозным переключателем с тормозным резистором.

При этом в режиме замедления/торможения электродвигатель работает как генератор, преобразуя механическую энергию в электрическую, которая в итоге рассеивается на тормозном резисторе. Типичными установками, в которых циклы разгона чередуются с циклами замедления являются тяговый привод электротранспорта, подъёмники, лифты, центрифуги, намоточные машины и т. п. Функция электрического торможения вначале появилась на приводе постоянного тока (например, троллейбус). В конце ХХ века появились преобразователи частоты со встроенным рекуператором, которые позволяют возвращать энергию, полученную от двигателя, работающего в режиме торможения, обратно в сеть. В этом случае, установка начинает «приносить деньги» фактически сразу после ввода в эксплуатацию.

Принцип работы частотного преобразователя

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector